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a b s t r a c t

We examine a technology-adoption game with network effects in which coordination on
either technology A or technology B constitutes a Nash equilibrium. Coordination on tech-
nology B is assumed to be payoff dominant. We define a technology’s critical mass as the
minimal share of users, which is necessary to make the choice of this technology the best
response for any remaining user. We show that the technology with the lower critical mass
implies risk dominance and selection by the maximin criterion. We present experimental
evidence that both payoff dominance and risk dominance explain participants’ choices in
the technology-adoption game. The relative riskiness of a technology can be proxied using
either technologies’ critical masses or stand-alone values absent any network effects.

� 2012 Published by Elsevier B.V.
1. Introduction

In many parts of modern economies (e.g., in information
and communications) the payoff associated with a particu-
lar technology (or, product) depends positively on the total
number of users choosing the same technology. The emer-
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gence of positive network effects (i.e., demand-side econo-
mies of scale) typically depends on user preferences for
compatibility (see Shapiro and Varian, 1998; Farrell and
Klemperer, 2007). Technologies may be differentiated, but
the importance of differentiation for users’ adoption deci-
sions is often negligible when compared with their prefer-
ence for compatible technologies.

A characteristic feature of markets with positive net-
work effects is that users (which can be consumers or
firms) typically face several incompatible technologies
(standards) when making their purchasing decisions.1 It
1 Examples of rivalry between incompatible technologies include the
VCR standards battle between JVC-sponsored VHS and Sony-sponsored
Beta (see Cusumano et al., 1992) and the coexistence of different standards
in wireless-telephone networks (namely, CDMA, TDMA and GSM) in the
United States (see Gandal et al., 2003).
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4 We do not know of any experimental evidence on the trade-off
between payoff dominance and risk dominance in a setting of competing
technologies, each giving rise to positive network effects. Yet, there are
several experimental studies on coordination games that are related to our
study. Cooper et al. (1990) report coordination failure in experimental
coordination games, where participants largely fail to coordinate on the
payoff-dominant equilibrium. While the authors do not explicitly analyze
the influence of riskiness, it is possible that the trade-off between payoff
dominance and risk dominance was responsible for the observed pattern.
Van Huyck et al. (1990, 1991) report on coordination-game experiments,
where they observe that in the case of a trade-off between payoff
dominance and security (the choice of a strategy yielding the highest
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is well known that simultaneous user choices between
incompatible technologies that exhibit pronounced network
effects give rise to multiple equilibria (see Farrell and
Saloner, 1985; Katz and Shapiro, 1985). Users, therefore,
face a coordination problem that involves strategic uncer-
tainty since it is not clear, which equilibrium should be
expected.2

There are numerous stories of ‘‘market failures’’ in the
presence of network effects, when users fail to coordinate
on the allegedly superior technology. A prominent exam-
ple is the persistence of the Qwerty keyboard standard,
which has been proscribed as inferior to the rival stan-
dard Dvorak (see David, 1985).3 David argues that net-
work effects can explain the emergence of such ‘‘Qwerty
worlds’’, in which users persistently select inferior technol-
ogies. In contrast to David, we analyze this issue from the
perspective of equilibrium selection. Users make their
choices under strategic uncertainty and (because of asym-
metries in technologies) face a trade-off between payoff
and risk.

Harsanyi and Selten (1988) develop the concept of risk
dominance as a criterion for equilibrium selection in
games with multiple Nash equilibria. Loosely speaking, it
selects the Nash equilibrium in which players choose
the less risky strategy. A strategy tends to be less risky
if it secures a relatively high payoff, independently of
the choices by the other players. Another criterion for
equilibrium selection is payoff dominance, which is given
when an equilibrium yields to all players a higher payoff
than any of the other equilibria. In a coordination game
with two Nash equilibria, with one equilibrium being pay-
off dominant (like Dvorak in the Qwerty situation), the
concept of risk dominance may have opposite effects on
the prediction of the actual outcome. If the payoff-domi-
nant Nash equilibrium is also risk dominant, the concept
of risk dominance is reassuring. If, however, the opposite
is true, i.e., one Nash equilibrium is payoff dominant while
the other one is risk dominant, then a trade-off emerges,
which may imply coordination on the inferior risk-domi-
nant equilibrium or coordination failure (disequilibrium
outcomes).

In this paper, we offer experimental evidence on how
human subjects resolve the trade-off between risk domi-
nance and payoff dominance in the presence of network
2 We follow Harsanyi and Selten (1988) and Van Huyck et al. (1990,
1991) who use the term strategic uncertainty to describe the uncer-
tainty that players are facing when they have more than one
equilibrium strategy. Burton and Sefton (2004) use another approach.
They analyze experimentally how strategic uncertainty affects partic-
ipants’ choices among equilibrium strategies. Under strategic uncer-
tainty they understand a player’s uncertainty about the other player’s
choice among all possible strategies including non-equilibrium
strategies.

3 Other prominent example includes Microsoft’s operating system MS
DOS and the videocassette recorder standard VHS, which have been
proscribed as inferior vis-à-vis Apple (see, e.g., Shapiro and Varian, 1998)
and Beta (see Cusumano et al., 1992), respectively.
effects.4 We introduce a technology-adoption game, where
N P 2 users simultaneously choose one of two technologies,
A or B, that both exhibit positive network effects. The utility
of adopting one of the technologies is the sum of the stand-
alone value plus the network value which is linearly increas-
ing in the number of users of the same technology. We re-
strict the parameters of the game such that coordination of
all users on either technology is a Nash equilibrium and
coordination on B is the payoff-dominant equilibrium.5

We introduce the concept of a ‘‘critical mass,’’ which we
define as the minimal share of users necessary to make the
choice of a technology the best response for any remaining
user.6,7 Intuitively, a technology with a lower (larger) critical
mass is less (more) risky since it requires less (more) users
to coordinate, which implies a lower (higher) level of strate-
gic uncertainty. We show that the critical-mass concept is
closely related to risk dominance and the maximin criterion.
In other words, a technology is chosen by both, risk domi-
nance and the maximin criterion, if and only if the technol-
ogy has a smaller critical mass.

We present the results of an experiment, where partic-
ipants play the technology-adoption game for different
parameter constellations. In all the versions of the game,
coordination on technology A constitutes the risk-domi-
nant equilibrium, while coordination on technology B con-
stitutes the payoff-dominant equilibrium. Our main results
are the following: (i) Both, payoff dominance and risk dom-
inance, explain participants’ choices (giving rise to disequi-
librium outcomes), and (ii) the relative riskiness of a
technology can be proxied by either the difference in tech-
nologies’ critical masses or the difference in their stand-
alone values.8
minimal payoff), disequilibrium outcomes prevail in the first period (which
can be considered as a proxy for a one-shot game). Straub (1995) concludes
from his experiment on repeated coordination games that coordination
failure appears to result from a trade-off between payoff dominance and
risk dominance.

5 In that sense, technology B is the superior one, while technology A is
inferior.

6 It is well known that markets with network effects exhibit a critical-
mass effect (see, for instance, Rohlfs, 1974; Economides, 1996; Suleyma-
nova and Wey, 2011).

7 Liebowitz and Margolis (1996) also point out the importance of the
critical mass in their illustrative analysis of consumers’ choices between
different standards. Besides several differences, our analysis gives theoret-
ical support to their approach based on the risk-dominance criterion.

8 Note that a Nash equilibrium is either risk dominant or not. In that
sense, the risk-dominance concept does not take account of gradual
changes of the riskiness of equilibrium play. Interpreting the risk-
dominance criterion in terms of the critical mass allows us to transform a
binary criterion into a continuous measure. The latter is important for the
empirical analysis of our experimental data.
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More precisely, we find that an increase in technology
B’s relative payoff dominance (proxied by the relative dif-
ference in technologies’ maximal payoffs) increases the
probability of a B-choice. We also show that an increase
in the relative riskiness of technology B (proxied either
by the relative difference in critical masses or stand-alone
values) reduces the probability of a B-choice.

Our paper is closely related to Heinemann et al. (2009).
They experimentally analyze a critical-mass coordination
game, where N P 2 players choose between a safe and a
risky strategy. The safe strategy delivers a constant payoff,
irrespectively of the other players’ choices. The payoff of
the risky strategy depends on the choices of the other play-
ers such that at least K players have to choose this strategy
to deliver a higher payoff than the safe strategy. If less than
K players choose the risky strategy, then the payoff is zero.
Heinemann et al. introduce the coordination requirement
k:¼(K � 1)/(N � 1) to proxy the coordination problem that
players face when choosing the risky strategy. Their exper-
iment shows that the number of participants choosing the
risky strategy becomes smaller when the coordination
requirement increases. A similar relationship is observed
regarding an increase of the safe payoff.

Our study is different from Heinemann et al. in that we
consider a game where both strategies are risky; i.e., pay-
offs always depend on the choices made by the other play-
ers. When both strategies are risky, our critical-mass
concept allows us to proxy the strategies’ relative riskiness.
Furthermore, we analyze the influence of the minimal pay-
offs (given by technologies’ stand-alone values) on partici-
pants’ choices in the experiment.

Schmidt et al. (2003) examines the influence of changes
in payoff and risk dominance on participants’ choices in
experimental coordination games. Their main finding is
that only changes in risk dominance help to explain the ob-
served data. We extend their analysis by proposing differ-
ent proxies for risk dominance based on the technologies’
critical masses or their minimal payoffs. Most importantly,
we show that both the proxies for risk and payoff domi-
nance explain participants’ behavior in our one-shot coor-
dination game.

We proceed as follows. In Section 2 we introduce the
technology-adoption game and define the critical-mass
concept. Section 3 shows how the concept of critical mass
relates to risk dominance and the maximin criterion. Section
4 presents the design of the experiment and Section 5 re-
ports the experimental results. Finally, Section 6 concludes.
9 We assume that users do not create network effects for themselves.
10 A Nash equilibrium (in pure strategies) is strong if each player has a

unique (pure-strategy) best response to his rivals’ equilibrium strategies
(see Harsanyi, 1973).

11 See also Kim (1996), who derives similar results for a symmetric
coordination game, in which N P 2 players make binary choices.
2. The technology-adoption game

Suppose that N P 2 identical and discrete users (which
can be consumers or firms) simultaneously make their
choices between two technologies, A and B. The payoff that
a user derives from technology i = A, B positively depends
on the total number of users choosing the same technol-
ogy, Ni 6 N, and is given by

UiðNiÞ ¼ ti þ ciðNi � 1Þ: ð1Þ

The parameter ti P 0 can be interpreted as the ‘‘stand-
alone value’’ that a user derives from technology i absent
any network effects. The term ci(Ni � 1) measures positive
network effects if Ni > 1 users choose the same technology
i.9 The coefficient ci P 0 measures the (constant) slope of the
network-effects function of technology i. Users always find it
optimal to adopt one of the technologies, so that NA + NB = N
holds.

The game is parameterized such that it has two strong
Nash equilibria in pure strategies, in which either all users
choose technology A (A-equilibrium) or all users choose
technology B (B-equilibrium).10 The B-equilibrium is sup-
posed to be payoff dominant. We summarize the corre-
sponding parameter restrictions as follows.

Assumption 1. We invoke the following parameter
restrictions:

(i) tj < ti + ci(N � 1), for i, j = A, B and i – j.
(ii) tB + cB(N � 1) > tA + cA(N � 1).

The proof of the next proposition shows that part (i) of
Assumption 1 ensures that there are exactly two (strong)
Nash equilibria in pure strategies (A-equilibrium and
B-equilibrium), so that users face a coordination game. Part
(ii) implies that the B-equilibrium is payoff dominant.11

Proposition 1. The technology-adoption game has exactly
two (strong) Nash equilibria in pure strategies, the A-and the
B-equilibrium.
Proof. An equilibrium, in which users coordinate on tech-
nology i, is a strong equilibrium if Ui(N) > Uj(1) holds,
which is equivalent to part (i) of Assumption 1. There can-
not exist another equilibrium in pure strategies in which
both technologies are chosen. Assume, on the contrary,
that there exists such an equilibrium where NA < N users
choose technology A and NB < N users choose technology
B, with NA + NB = N. Then it must hold that UA(NA) P
UB(NB + 1) and UB(NB) P UA(NA + 1). From Eq. (1) it follows
that UA(NA + 1) > UA(NA), which together with the former
inequalities implies UB(NB) P UA(NA + 1) > UA(NA) P UB

(NB + 1). It follows that UB(NB) > UB(NB + 1). Obviously, this
is not consistent with (1). Hence, the condition � cA

(N � 1) < tA � tB < cB(N � 1) assures that there are only
two Nash equilibria in pure strategies; namely, the
A-equilibrium and the B-equilibrium. h

Proposition 1 states the problem of multiple equilibria,
which is a characteristic feature of markets with network
effects. Let us now introduce the critical-mass concept.
We define the critical mass, mi, of technology i as the
minimal share of users choosing technology i that is nec-
essary to make the choice of this technology the best
reply for any remaining user. The following lemma
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provides the formal derivation of the critical mass and
states its properties.12

Lemma 1. The critical mass of technology i is given by

mi ¼
tj � ti þ cjðN � 1Þ
ðcA þ cBÞðN � 1Þ ; ð2Þ

with i, j = A, B and i – j. It holds that mA = 1 �mB and mi 2
(0, 1). Moreover, @mi/@ti < 0, @mi/@ci < 0, omi/@tj > 0, and
@mi/@cj > 0.
14 See Van Huyck et al. (1990, 1991) for contributions, which highlight
disequilibrium outcomes in the first periods of experimental coordination
games (which can be considered as a proxy for a one-shot game).

15 Risk dominance criterion is a selection criterion among Nash equilibria.
It picks the equilibrium which is chosen by the tracing procedure. In the
case of 2 � 2 games the risk-dominant equilibrium satisfies three axioms:
invariance with respect to isomorphism, best-reply invariance, and payoff
monotonicity.

16 The tracing procedure extends the Bayesian approach from one-person
to n -player decision problems. The Bayesian approach is motivated by the
uncertainty about the choices of the other players. At the beginning of the
tracing procedure every player expects all other players to act according to
Proof. Consider the decision problem of a single user.
Assume that eN other users choose technology i. If choosing
technology i constitutes the best response for a user under
the assumption that all other, N � eN � 1, users choose
technology j – i, then it also constitutes the best response
in all other cases (when less than N � eN � 1 users choose
technology j). Hence, it must hold that UiðeN þ 1ÞP
UjðN � eNÞ or

ti þ ci
eN P tj þ cjðN � eN � 1Þ: ð3Þ

The minimal value of eN , which satisfies Inequality (3),
eNmin, is given by13

eNmin ¼
tj � ti þ cjðN � 1Þ

cA þ cB
:

Given part (i) of Assumption 1 it holds that

0 < eNmin < N � 1: ð4Þ

Thus, mi is given by

mi ¼
eNmin

N � 1
¼

tj � ti þ cjðN � 1Þ
ðcA þ cBÞðN � 1Þ : ð5Þ

Adding the critical masses of technologies A and B, we get
mA + mB = 1. From (4) and (5) it follows that mi 2 (0,1). The
signs of the derivatives omi/@ti < 0, @mi/ oci < 0 and @mi/
@tj > 0 are straightforward, while

@mi

@cj
¼ � tj � ½ti þ ciðN � 1Þ�

ðcA þ cBÞ
2ðN � 1Þ

> 0 ð6Þ

follows from part (i) of Assumption 1. h

The critical mass of technology i decreases when the
parameters ti and ci of the payoff function increase, while
it increases in the parameters tj and cj of the other technol-
ogy. When technology i’s stand-alone value and/or the
slope of its network-effects function increases, less users
are needed to make the choice of this technology the best
reply for the remaining users. Hence, technology i’s critical
mass decreases. When, in contrast, those parameters in-
crease for the rival technology j, technology i’s critical mass
increases. Note also that since mA = 1 �mB holds (as stated
12 The critical mass is closely related to the stability index which is used
in Selten (1995) to derive a measure of risk dominance for equilibrium
selection in more general games with more than two strong Nash equilibria
in pure strategies.

13 If eNmin is not an integer, we take instead the next integer which fulfills
(3).
in Lemma 1), an increase of one technology’s critical mass
implies a decrease of the other technology’s critical mass
by the same amount.

We finally observe that part (ii) of Assumption 1 implies
that technology B’s critical mass is restricted from above;
or, precisely, that mB < cB/(cA + cB) holds.

The critical mass is an intuitive proxy of a technology’s
riskiness. When the critical mass of a technology de-
creases, the choice of this technology becomes less risky
in the sense that fewer users are needed to make the
choice of this technology the best reply for any remaining
user. Conversely, a large critical mass means that a rela-
tively large portion of users is needed to induce others to
follow for sure. This implies a large degree of strategic
uncertainty.

The problem of multiple Nash equilibria in games has
inspired a large literature, one strand mainly dealing with
improving the theoretical prediction of equilibrium play
and another strand using experimental methods to explore
participants’ actual behavior. In a coordination game, the
Nash-equilibrium concept does not yield a unique predic-
tion for participants’ behavior. The lack of theoretical pre-
cision is mirrored in experimental studies, which often
conclude that Nash-equilibrium predictions perform
poorly in games with multiple equilibria.14

We next show the close relationship between the criti-
cal-mass concept, risk dominance, and the maximin
criterion.

3. Risk dominance and the maximin criterion

3.1. Risk dominance

To find the risk-dominant equilibrium, we apply the
tracing procedure proposed by Harsanyi and Selten
(1988).15,16 The tracing procedure describes a process of
converging expectations from the priors to the expectations
implying one of the Nash equilibria that is called the risk-
dominant equilibrium. This procedure starts from the priors
for every user l = 1, 2, . . . , N, which characterize the prior
expectations of all other users about the probabilities with
which user l chooses his pure strategies (technology A and
some priors (prior distributions over a player’s pure strategies). However,
these expectations are not self fulfilling and, hence, have to be adjusted. In
each step of the tracing procedure the role of the prior expectations
decreases. In each step every player plays a best response given his
expectations. The tracing procedure consists in finding a feasible path from
the prior expectations to the expectations, which correspond to one of the
Nash equilibria. That equilibrium is called risk-dominant equilibrium.
Expectations at the end of the tracing procedure are fulfilled.
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technology B).17 To find the priors we follow the three
assumptions proposed by Harsanyi and Selten. First, a user
l expects that either all other users choose technology B
(with probability ql) or all other users choose technology A
(with a counter probability 1 � ql). Second, a user plays a
best response to his expectations. Third, it is assumed that
expectations ql are independently-distributed random vari-
ables and each of them has a uniform distribution over the
unit interval. The tracing procedure consists in finding a fea-
sible path from the equilibrium in the starting point given by
the priors to the equilibrium in the end point given by the
original game. The equilibrium in the end point constitutes
the risk-dominant equilibrium. The next proposition defines
the risk-dominant equilibrium in the technology-adoption
game.18

Proposition 2. In the technology-adoption game, the equi-
librium in which all users adopt technology i is risk dominant
if and only if technology i has a lower critical mass than the
rival technology j, with i, j = A, B and i – j. If mA = mB, then
there exists no risk-dominant equilibrium.
20 The critical-mass concept is also related to the theory of global games
Proof. We start with users’ priors. Using the first assump-
tion of Harsanyi and Selten, we can derive the value of ql

such that user l is indifferent between the technologies
(we denote that value by ~q):19

~q :¼ tA � tB þ cAðN � 1Þ
ðcA þ cBÞðN � 1Þ : ð7Þ

Following Harsanyi and Selten’s second assumption, we
derive from (7) user l’s best response to his beliefs: play
A if ql < ~q and play B if ql > ~q. The third assumption states
that ql is uniformly distributed over the interval [0, 1].
Hence, the probability that ql < ~q is ~q and the probability
that ql > ~q is 1� ~q, which holds for any l. Then, user l
chooses A with probability ~q and chooses B with counter
probability 1� ~q. This constitutes the prior adopted by all
other users about user l’s choices at the beginning of the
tracing procedure. Given such a prior, the expected payoff
of any user from choosing technology A is

tA þ cAðN � 1Þ~q: ð8Þ

Similarly, the expected payoff from choosing technology
B is

tB þ cBðN � 1Þð1� ~qÞ: ð9Þ

Combining (8) and (9) we obtain that a user chooses B if
and only if
17 At the beginning of the tracing procedure every player assigns a certain
probability to the hypothesis that a given player will actually use his pure
strategy. The combination of these probabilities for a given player
constitutes the expected (prior) probability distribution over the pure
strategies of that player or, prior. Any player forms such priors for all other
players. Harsanyi and Selten (1988) assume that all other players associate
the same prior probability distribution with a given player.

18 Carlsson and van Damme (1993) implicitly derive the condition of risk
dominance for the stag-hunt game. In that game N P 2 identical players
make binary choices between two options, one of which delivers a secure
payoff while the other delivers a risky payoff that is increasing in the share
of players choosing the risky option.

19 Note that ~q is the same for all the users.
tB þ cBðN � 1Þð1� ~qÞ > tA þ cAðN � 1Þ~q

holds, which is equivalent to

2ðtA � tBÞ þ ðN � 1ÞðcA � cBÞ < 0: ð10Þ

Comparing Condition (10) with the formula for mi stated in
Lemma 1, it is obvious that Condition (10) holds if and only
if mB < 1/2. From Condition (10) it follows immediately
that a user chooses A if and only if

2ðtA � tBÞ þ ðN � 1ÞðcA � cBÞ > 0: ð11Þ

If mB = 1/2, then a user is indifferent between choosing A or
B. Conditions (10) and (11) characterize the equilibrium
based on the priors: If (10) holds, then all users choose
technology B, but they choose technology A if (11) holds.
For the special case of our game we do not need to con-
tinue the tracing procedure any further and can make
use of Lemma 4.17.7 in Harsanyi and Selten (1988, p.
183). This Lemma states that the equilibrium of a game
based on the priors is the outcome selected by the tracing
procedure, if the following conditions hold. First, the equi-
librium must be a strong equilibrium point, when each
user behaves according to his prior beliefs, which is guar-
anteed for the B-equilibrium by Condition (10) and for
the A-equilibrium by Condition (11). Second, the equilib-
rium must also be an equilibrium of the original game,
which holds according to Proposition 1. Hence, we obtain
the result that technology i is risk dominant if and only if
mi < mj. h

According to Proposition 2 the technology with the low-
er critical mass is risk dominant. This result is intuitive as a
larger critical mass implies that relatively more users are
needed to make the adoption of the technology surely
profitable, which leads to a higher degree of strategic
uncertainty. If technology B has a larger critical mass than
technology A, risk dominance requires to select technology
A, which is the payoff-inferior equilibrium.20

3.2. Maximin criterion

The maximin criterion selects the technology, which
delivers the maximal payoff in the worst outcome. In the
technology-adoption game the worst outcome for a player
is to be the only user of a technology. In that case, the pay-
off is given by the stand-alone value of that technology.

In the following corollary we show how the maximin
criterion relates to the critical-mass concept.
(see Morris and Shin, 2003) and cognitive hierarchy models. The theory of
global games introduces uncertainty into the game, which allows to derive
a unique equilibrium prediction. Within our setting, it can be shown that
the theory of global games also chooses the technology with the lower
critical mass (the analysis of the global-game variant of our technology-
adoption game is presented in Keser et al., 2009, which is an older version
of this paper). In a cognitive hierarchy model, a type-k player anchors his
beliefs in a nonstrategic 0-type and adjusts them by thought experiments
with iterated best responses, where a type-1 player chooses a best response
to type-0, type-2 to type-1, and so on. In our technology-adoption game,
half of type-0 players choose either A or B, while type-1 players choose A as
the best response whenever the critical mass of technology A is smaller
than the critical mass of technology B. Accordingly, all higher types then
also choose A (see Camerer et al., 2004, for a similar observation for the
stag-hunt game).
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Corollary 1. Whenever technology A has a lower critical
mass, it is chosen by the maximin criterion.
21 The choice of a group size of 17 participants is motivated by the
necessity (i) to have sufficient variation in the critical mass of the payoff-
dominant alternative, with (N � 1)mB being an integer, (ii) to exclude
negative payoffs associated with alternative B, and (iii) to have sufficient
variation in the payoffs of alternative A, such that both alternatives yield
sufficiently risky payoffs (depending strongly on the other participants’
choices). If, for instance, we used the group size of N = 7, then (N � 1)mB

could only take two possible values, 6mB 2 {4, 5}, providing too little
variation. In contrast, in our experiment (N � 1)mB takes four different
values. The same variation could also be achieved if using the group size
N = 11. However, we also had to consider values of the critical mass, which
are not very far away from 0.5. Otherwise, we (i) could get negative payoffs
associated with alternative B (when NB is small) or (ii) get a very flat payoff
function for alternative A. The group size N = 17 allowed to have sufficient
variation in alternative B’s critical mass in a region not too close to 1.

22 In the tables we rounded the payoffs to the closest integer, where
necessary.
Proof. Equilibrium B is payoff dominant, hence,

tA � tB þ ðN � 1ÞðcA � cBÞ < 0 ð12Þ

must hold. If equilibrium A has a lower critical mass, then
according to Lemma 1 it is true that

tA � tB > �½tA � tB þ ðN � 1ÞðcA � cBÞ�: ð13Þ

Note that the RHS of Eq. (13) is positive due to (12), hence,
tA > tB. h

Corollary 1 states that when there is a conflict between
payoff dominance and risk dominance (such that technology
A is risk dominant and technology B is payoff dominant), the
risk-dominant technology is chosen by the maximin crite-
rion. In that case the risk-dominant technology not only
has a lower critical mass but also a larger stand-alone value.
This result seems to be quite intuitive. The payoff-dominant
technology delivers a higher payoff in the case of successful
coordination. In contrast, the risk-dominant technology
delivers a higher expected payoff when strategic uncer-
tainty is taken into account. In other words, the risk-domi-
nant technology has to deliver higher payoff in the case of
mis-coordination, i.e., when not all users choose the same
technology. Note next that there are two parameters, which
determine a technology’s payoff: its stand-alone value and
the slope of its network-effects function. If coordination
fails, the slope of the network-effects function becomes less
important for a user’s payoff. At the same time, the role of the
stand-alone value increases, since it does not depend on
choices made by the other users. This implies that the risk-
dominant technology is also chosen by the maximin crite-
rion because it must have a larger stand-alone value.

Our results allow the following interpretation: A tech-
nology’s stand-alone value and its critical mass can serve
as a proxy for its relative riskiness (or, conversely, relative
safety). If, ceteris paribus, a technology’s stand-alone value
(critical mass) increases (decreases), then a technology be-
comes less risky.

We next analyze how participants resolve the trade-off
between payoff dominance and risk dominance in an
experiment, where they play a one-shot technology-
adoption game. We focus on parameter constellations,
which guarantee that technology A has a lower critical
mass (larger stand-alone value) and technology B yields a
higher maximal payoff (the payoff in case of a successful
coordination). By increasing (decreasing) the stand-alone
value of technology A (or, B) or, equivalently, by decreasing
(increasing) its critical mass, while keeping the difference
in technologies’ maximal payoffs fixed, we are able to ana-
lyze the influence of the technologies’ relative riskiness on
participants’ choices. To analyze the influence of payoff
dominance we vary differences in the technologies’ maxi-
mal payoffs while keeping their critical masses constant.

4. Design of the experiment

The experiment consists of 16 decision situations. Every
decision situation is based on a particular specification of
the technology-adoption game. In every decision situation,
each of the 17 participants chooses between two alterna-
tives, A and B.21 The payoffs in each decision situation were
presented in a table (see Appendix B for the tables of the 16
decision situations).22 The payoffs were given in fictitious
units.

In a coordination game with two alternatives labeled
A and B, A might, according to common habit (e.g.,
A-quality versus B-quality), be considered as preferable
to B and thus constitute a focal choice in the technol-
ogy-adoption experiment. To avoid attributing such sal-
iency to one of the alternatives, we re-labeled the
alternatives as either X or Z. Furthermore, we did not
want to use consistently the same label for the payoff-
dominant (or, respectively, the risk-dominant) alternative
in all the decision situations. This could induce some
of the participants to stick to the choice of the payoff-
dominant (or, risk-dominant) alternative in the whole
experiment, if such a choice has been made in the initial
decision situations or if the participant simply has a
preference for a label. By changing the alternatives’ la-
bels, we aimed to induce among the participants more
careful choices when assessing the payoffs delivered by
the alternatives. In Appendix B, in each of the tables
describing a specific decision situation, we state in
brackets the respective label actually used for each of
the two alternatives in the experiment.

In Table 1 below we present the parameters character-
izing each of the 16 decision situations. The parameters in-
clude the maximal payoff from choosing alternative i,
Umax

i :¼ Uið17Þ, the difference in the maximal payoffs of
the two alternatives, dmax

:¼ Umax
B � Umax

A , the minimal pay-
off from choosing alternative i (stand-alone value),
Umin

i :¼ Uið1Þ, the difference in the minimal payoffs of the
two alternatives, dmin

:¼ Umin
A � Umin

B , and the critical mass
of alternative i multiplied with 16 (i.e., N � 1).

The decision situations can be grouped into four blocks
of four decision situations, each. Within each block, we
keep Umax

A and Umax
B constant. Hence, dmax, which can be

used as a proxy for the relative payoff dominance of alter-
native B, does not change within a block. We vary the rel-
ative payoff dominance of alternative B across blocks,
though. More concretely, we reduce dmax from 75 in the



Table 1
Parameters of technology adoption game in different decision situations.

Block 1 Block 2 Block 3 Block 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Umax
B 325 325 325 325 300 300 300 300 280 280 280 280 310 310 310 310

Umax
A 250 250 250 250 245 245 245 245 229 229 229 229 264 264 264 264

dmax 75 75 75 75 55 55 55 55 51 51 51 51 46 46 46 46

Umin
B

5 5 5 5 60 60 60 60 133 104 64 4 164 134 92 30

Umin
A

134 178 214 243 156 189 216 238 205 205 205 205 232 232 232 232

dmin 129 173 209 238 96 129 156 178 72 101 141 201 68 98 140 202
16mB 9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12
16mA 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4

27 We implemented a within-subject design with multiple observations
for each participant.

28 The decision situations were presented to participants in an order,
which was different from the one given in Appendix B. The decision
situations were presented to all the participants in the same order. We did
not want to impact participants’ choices by ordering the decision situations
in a way, in which the influence of either the critical mass or payoff
dominance on their choices would be likely. The former could happen if the
decision situations of one block were placed according to alternative B’s
critical mass from the smallest to the largest. Hence, we did not place the
decision situations of one block next to each other. To exclude the influence
of payoff dominance, we avoided placing the decision situations with the
same critical mass of alternative B (but various differences in alternatives’
maximal payoffs) next to each other. In Appendix B in each table describing
a specific decision situation, we provide in brackets the number, under
which that decision situation appeared in the experiment’s decision sheets.

29 The randomization was organized as follows: At the beginning of the
session every participant got a set of decision sheets together with a
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first block to 46 in the fourth block. Within each block we
have four decision situations, which vary with respect to
the critical mass of alternative B and the difference in the
alternatives’ minimal payoffs. We increase the critical
mass of alternative B (multiplied by 16) from 9 up to 12.
Similarly, the difference in the alternatives’ minimal pay-
offs increases within each block. Thus, using either the crit-
ical mass or dmin as a proxy, the relative riskiness of
alternative B increases within each block.23

We hypothesize that for a given relative payoff
dominance of alternative B (proxied by dmax) the proba-
bility of a B-choice is the lower, the higher the critical
mass of alternative B. We expect the same relationship
to hold with regard to the difference in the alternatives’
stand-alone values. Moreover, we hypothesize that for a
given relative riskiness of alternative B (proxied by either
mB or dmin) the probability of a B-choice is the
higher, the higher the relative payoff dominance of alter-
native B.

We ran two sessions of a paper-and-pencil experiment
at the Georg-August-Universität Göttingen in February,
2009. In both experimental sessions together, we had
153 participants, all of them being economics students.24

We excluded from the analysis the decisions of five partici-
pants, whose answers were incomplete. In the following, we
analyze the decisions of the remaining 148 participants.
Each session of an experiment was conducted at the end
of a lecture. Students were free to leave the auditorium or
to stay and to participate in the experiment.

The experimental instructions were read aloud to guar-
antee that all of the participants know that the conditions
of the experiment are common knowledge.25 After the
instructions were read, the participants could ask questions,
which were answered in private.26
23 The increase in alternative B’s critical mass (also, the increase in
alternatives’ minimal payoffs) is achieved through either increasing the
stand-alone value of alternative A (in blocks 1 and 2) or decreasing the
stand-alone value of alternative B (in blocks 3 and 4).

24 The number of participants was almost equal in the two sessions.
25 See Appendix A for the instructions.
26 We did not run any training session before the experiment, which is an

obvious limitation of a paper-and-pencil experiment. However, we pre-
sented an example of a technology-adoption game, which showed how the
individual payoff of a participant depends on his own choice and the
choices of the other participants.
In each of the two sessions, each participant had to pro-
vide answers to all of the 16 decision situations.27,28 In every
session, there were several groups of 17 participants. All par-
ticipants of a given session were sitting in the same room. In
each session only the answers of one group, whose members
were randomly chosen from the total number of participants
of the session, were considered for the final payment.29 We
analyzed the answers of all members of the selected group
in a preselected decision situation (decision situation 2).30

The analysis took place at the end of the session after all
the session’s participants had handed in their answers.31

However, not all members of the randomly chosen group
were paid. Out of the 17 selected participants only one was
participation number on a separate piece of paper. The same number was
also noted on the participant’s decision sheets. At the end of the session the
instructors collected the filled-in decision sheets, while the participation
numbers were kept by the participants. The instructors then invited one of
the participants in the room to randomly draw 17 sets of decision sheets
out of the pile of all collected decision sheets. The 17 participants, whose
decision sheets were drawn, were identified with their numbers.

30 The number of the decision situation which was selected for the
payment was announced to the participants after they handed in their
decision sheets to the instructors.

31 Due to natural limitations of a paper-and-pencil experiment we did not
present the participants’ payoffs after each decision situation. As men-
tioned above, we did that only at the very end of the session for only one
randomly chosen group and considered its answers in only one decision
situation. This, however, allowed us to avoid the problem of possible
learning by the participants during the experiment.



Table 2
Choices depending on the relative payoff dominance of alternative B.

16mB = 9 16mB = 10 16mB = 11 16mB = 12

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
dmax 75 55 51 46 75 55 51 46 75 55 51 46 75 55 51 46
NB 75 70 68 63 65 76 68 59 64 67 61 62 71 66 61 61
NA 73 78 80 85 83 72 80 89 84 81 87 86 77 82 87 87

Table 3
Choices depending on the relative riskiness of alternative B.

dmax = 75 dmax = 55 dmax = 51 dmax = 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16mB 9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12
NB 75 65 64 71 70 76 67 66 68 68 61 61 63 59 62 61
NA 73 83 84 77 78 72 81 82 80 80 87 87 85 89 86 87

Table 4
Logit regression-1 explaining the probability of a B-choice.

Explanatory variable Coefficient (standard error)

⁄⁄
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randomly chosen for actual payment in cash.32 We used a
conversion rate of 50 €-Cent for one fictitious unit. In the first
session, the randomly chosen participant was paid € 83.00
and in the second session, the payment was € 114.00.
Constant �1.1 (0.55)
dmax

=Umax
B

5.72⁄⁄⁄ (2.2)
(mB �mA)/mB �0.75⁄ (0.39)

Wald v2, p-value 0.0055
Number of observations

(number of groups)
2368 (148)

⁄ Significance level is: 10%.
⁄⁄ Significance level is: 5%.
⁄⁄⁄ Significance level is: 1%.
5. Experimental results

As one may expect from experiments conducted by
Van Huyck et al. (1990, 1991), disequilibrium outcomes
prevail in our data. Table 2 presents the total number of
A- and B-choices in the 16 decision situations (NA, NB).
The highest share that an alternative achieved in a situa-
tion is 60% which is the share of alternative A in the deci-
sion situation 14. We observe that in most decision
situations the number of B-choices is smaller than the
number of A-choices.33 Only in decision situations 1 and 6
the number of B-choices is larger. Over all decision situa-
tions, the average share of B-choices is 45%, while the aver-
age share of A-choices is 55%.

Our next observation is that an increase in alternative
B’s relative payoff dominance tends to increase the number
of B-choices. In Table 2 we present the 16 decision situa-
tions in four blocks of four, but in an ordering that is differ-
ent from Table 1. In Table 2, we keep in each block the
critical mass constant, while within each block dmax de-
creases and takes the values 75, 55, 51, and 46. Table 2 re-
veals that in each block the number of B-choices tends to
fall from the left to the right. In blocks 1 and 4 the number
of B-choices decreases monotonically when dmax becomes
smaller, whereas blocks 2 and 3 exhibit some irregularities.

In Table 3 we have re-arranged the columns of Table 2
such that again, like in Table 1, each block represents a dif-
ferent value of dmax, while within each block 16mB in-
creases from 9, to 10, to 11, and finally, to 12. Inspection
of Table 3 yields that in every block the number of
32 The answers of the 17 randomly chosen participants in decision
situation 2 were noted on the blackboard. Using those numbers, the
instructors calculated the payoff (in fictitious units) of the one participant
randomly chosen for cash payment (after a participating student has been
invited to randomly draw for payment one out of the 17 sets of decision
sheets.) The payoff in fictitious units was then converted into €.

33 Below we discuss possible labeling effects.
B -choices almost monotonically decreases as the critical
mass of alternative B increases.

We next present the results of a regression analysis,
where we analyze the joint influence of payoff dominance
and riskiness on participants’ choices.

Result 1. Participants’ choices depend both on the relative
payoff dominance of alternative B, proxied by the relative
difference in maximal payoffs, and its riskiness, proxied by
the relative difference in critical masses.

Table 4 presents the results of a Logit regression-1 with
the probability of a B-choice as the dependant variable. In
that regression we proxy the relative payoff dominance of
alternative B by the ratio of the difference in maximal pay-
offs to alternative B’s maximal payoff, dmax

=Umax
B .34 Simi-

larly, we proxy the relative riskiness of alternative B by the
ratio of the difference in critical masses to alternative B’s
critical mass, (mB �mA)/mB.

Table 4 shows that both, the relative payoff dominance
of alternative B and its relative riskiness, influence partici-
pants’ choices. The regression results imply that the prob-
ability of a B-choice increases when the relative payoff
dominance of alternative B increases. The respective coef-
ficient is significant at the 1% significance level. Our proxy
for the riskiness of alternative B is negatively correlated
34 The same proxy for payoff dominance is also used in Schmidt et al.
(2003).



Table 5
Logit regression-2 explaining the probability of a B-choice.

Explanatory variable Coefficient (standard error)

Constant �2.26⁄⁄⁄ (0.63)
dmax

=Umax
B

10.9⁄⁄⁄ (3.18)

dmin
=Umin

B
�0.01⁄⁄ (0.01)

Wald v2, p-value 0.0026
Number of observations

(number of groups)
2368 (148)

⁄⁄ Significance level is: 5%.
⁄⁄⁄ Significance level is: 1%.

270 C. Keser et al. / Information Economics and Policy 24 (2012) 262–276
with the probability of a B-choice. The respective coeffi-
cient is significant at the 10% significance level.

We considered several specifications of a Logit regres-
sion with explanatory variables based on the alternatives’
maximal payoffs and critical masses.35 All those Logit
regressions share two features. The coefficient measuring
the influence of alternative B’s relative payoff dominance
(riskiness) on the probability of a B-choice is positive (nega-
tive). Moreover, the former coefficient is almost always
more significant than the latter coefficient (in six out of nine
regressions, while in three of them the opposite holds). We
chose Logit regression-1 for the following reasons: (i) That
regression outperforms all others in terms of the significance
levels of the individual coefficients and their joint signifi-
cance based on the Wald v2 test. (ii) Logit regression-1
seems to be very intuitive. One can argue that relative differ-
ences better mirror the advantage of one alternative over the
other than absolute differences. Also, a ‘‘normalization’’ with
regard to the payoff-dominant alternative B can be due to
the fact that participants evaluate the alternatives relative
to the payoff-dominant alternative, which appears to be
most attractive at a first sight.

We also considered a Probit regression-1 with the same
explanatory variables as in Logit regression-1. That regres-
sion delivers even more significant results such that the
coefficient measuring the influence of alternative B ’s rela-
tive risk dominance on the probability of a B-choice is sig-
nificant at the 5% significance level. The coefficient
capturing the influence of alternative B’s relative payoff
dominance is significant at the 1% significance level. The
signs of the coefficients do not change.

We finally controlled for possible labeling effects. For
this we introduced a dummy variable which takes the va-
lue ‘‘1’’ in a decision situation, where alternative B is la-
beled as X, and the value ‘‘0,’’ where alternative B is
labeled as Z. Our results are summarized in Logit regres-
sion-1(l) presented in Appendix C. They show that there
is some positive labeling effect such that, ceteris paribus,
alternative B is more likely to be chosen when it is labeled
as X rather than Z: The respective coefficient is significant
at the 5% significance level. Both, the coefficient capturing
the influence of alternative B’s payoff dominance and the
one capturing its riskiness, remain significant and do not
change the sign. We conclude that the above identified
relations between the probability of a B-choice, the relative
payoff dominance, and the riskiness of alternative B are
robust.

Result 2. Participants’ choices depend both on the relative
payoff dominance of alternative B, proxied by the relative
difference in maximal payoffs, and its riskiness, proxied by
the relative difference in minimal payoffs.

In Table 5 we present Logit regression-2 explaining the
probability of choosing alternative B. It is similar to Logit
regression-1 but replaces the relative difference in critical
masses by the relative difference in minimal payoffs as a
proxy for riskiness of alternative B. Table 5 shows that both
35 The other specifications of the Logit regression not presented in the
paper and the Probit regression (discussed below) are available from the
authors on request.
the relative difference in maximal payoffs as well as the
relative difference in minimal payoffs explain participants’
choices of alternative B. Again, the larger the relative dif-
ference in the maximal payoffs, the more participants
choose alternative B. The respective coefficient is signifi-
cant at the 1% significance level. We also see that an in-
crease in the relative difference in the minimal payoffs of
the two alternatives reduces the probability of a B-choice.
The respective coefficient is significant at the 5% signifi-
cance level.

We examined several specifications of a Logit regres-
sion with explanatory variables based on the alternatives’
maximal and minimal payoffs.36 All of those regressions
have two common features. First, the coefficient measuring
the influence of alternative B’s relative payoff dominance
(riskiness) is positive (negative). Second, the coefficient on
payoff dominance is more significant than the one on riski-
ness. This is the case in six out of nine regressions, while in
three of them the significance levels of the two coefficients
are the same. Logit regression-2 outperforms all of the other
regressions in terms of the significance levels of the individ-
ual coefficients and their joint significance based on the
Wald v2 test. Furthermore, the results of Logit regression-
2 are quite intuitive. Both explanatory variables relate the
difference in maximal (minimal) payoffs of the two alterna-
tives to the maximal (minimal) payoff of the payoff-domi-
nant alternative B, which may seem to be more attractive
at a first sight.

We also considered a Probit regression-2 with the same
explanatory variables as in Logit regression-2. The signifi-
cance levels of all the coefficients and their signs do not
change. The Probit regression even outperforms in terms
of the joint significance of the coefficients.

We finally controlled for possible labeling effects. Our
results show that the effect of labeling is positive such that,
ceteris paribus, alternative B is more likely to be chosen
when it is labeled as X rather than Z (see Logit regres-
sion-2(l) in Appendix C). The respective parameter esti-
mate is significant at the 10% significance level.
Compared to Logit regression-2, the coefficients measuring
the influence of alternative B’s payoff dominance and its
riskiness on participants’ choices do not change the sign
and remain robust. We conclude that the above identified
relations between the probability of a B-choice, and the
36 The other specifications of the Logit regression not presented in the
paper and the Probit regression (discussed below) are available from the
authors on request.
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relative payoff dominance and riskiness of alternative B are
robust.

When we compare Table 5 to Table 4 (where we used
the relative difference in the alternatives’ critical masses
as an explanatory variable), we see that the ‘‘maximin’’
specification performs better in terms of the significance
level of the parameter estimates. We speculate that it is
easier for participants to apply the maximin criterion than
to calculate a critical mass, since the maximin criterion
only requires to compare safe payoffs (i.e., the minimal
payoffs of each alternative). In other words, the critical
mass seems to be a more sophisticated concept for partic-
ipants than the maximin criterion. We also observe that in
both regressions the proxy for alternative B’s payoff domi-
nance is more significant than the proxy for alternative B’s
riskiness (based on either alternatives’ minimal payoffs or
critical masses). One may speculate that in the technology-
adoption experiment the alternatives’ maximal payoffs are
more decisive for participants’ choices than the relative
riskiness of the alternatives.

We can now summarize our experimental results as fol-
lows: We find that both payoff dominance and riskiness
explain the aggregate choices of participants in the tech-
nology-adoption experiment. We also show that, to proxy
the alternative’s riskiness, either the alternatives’ critical
masses or minimal payoffs can be used. Payoff dominance
or risk dominance, separately, would choose one of the two
alternatives with probability one. Our results suggest that
participants resolve the trade-off between payoff domi-
nance and risk dominance differently, so that in the aggre-
gate changes in the relative riskiness and the relative
payoff dominance of alternatives affect participants’
choices only at the margin.

Our results complement those of Heinemann et al.
(2009). Those authors found that both, the coordination
requirement k (which is similar to our critical mass) and
the payoff of the safe option, negatively influence the prob-
ability of choosing the risky option. There are, however,
important differences between their experiment and ours.
First, in their experiment the coordination requirement k
was stated explicitly in each decision situation. In our
experiment the participants had to infer the value of the
critical mass from the presented payoff tables (see Appen-
dix B). This can explain why in our experiment minimal
payoffs provide a better explanation of participants’
choices than critical masses do. Second, in their experi-
ment, the decision situations were displayed to the partic-
ipants (on the computer screen) in a sequence ordered by
the increasing safe payoff. Our experiment, in contrast,
placed all decision situations in the set of decision sheets
in an order such that the participants were not explicitly
framed to follow threshold strategies.37
37 Heinemann et al. (2009) report that a vast majority of participants used
threshold strategies for any given coordination requirement. This implies
that a participant chooses the risky strategy if the safe payoff is low and the
safe strategy if the safe payoff is high. Moreover, a participant never
switches back to the risky strategy for rising safe payoffs. We do not
observe such a strict pattern in our data.
6. Conclusion

In a technology-adoption game in which N P 2 identi-
cal users simultaneously choose between two technologies
that exhibit positive network effects a coordination prob-
lem arises. The game has two strong Nash equilibria in
pure strategies, where users coordinate on one of the tech-
nologies. One of these equilibria is assumed to be payoff
dominant. We introduced the heuristic concept of a critical
mass, defined as the minimal share of users adopting a
technology necessary to make the choice of this technology
the best response for any remaining user. We show that
the technology with the lower critical mass is risk domi-
nant in the sense of Harsanyi and Selten (1988) and is cho-
sen by the maximin criterion. Our critical-mass heuristic is,
thus, theoretically instructive.

In the experimental part we analyze participants’ choices
in a technology-adoption game which implies a trade-off
between risk dominance and payoff dominance, such that
the payoff-dominant alternative has a larger critical mass.
The results show that participants’ choices depend both on
relative payoff dominance and relativeriskiness of the alter-
natives. We proxy the alternative’s relative payoff domi-
nance by the difference in maximal payoffs relative to the
maximal payoff of the payoff-dominant alternative. With
regard to relative riskiness we find that the difference in crit-
ical masses or stand-alone values of the alternatives (both
relative to the payoff-dominant alternative) do explain the
outcomes of our experiment. Our results reveal that an
alternative is more likely to be chosen when its relative pay-
off dominance (riskiness) increases (decreases).

Our results have important implications for firms’ strat-
egies and industrial policy. For instance, in order to reduce a
technology’s (or, product’s) relative riskiness, activities to
promote user adoption might become advisable, which
are otherwise unprofitable or socially not desirable. Such
activities could include price discrimination (similar to
‘‘introductory’’ offers) or ‘‘biased’’ innovation (e.g., by focus-
ing exclusively on the quality of the stand-alone value).

There are many possible directions for further experi-
mental research. It would be insightful to run an experi-
ment with different group sizes. We know from previous
research that group size is an important factor determining
successful coordination. With a larger group size the role of
riskiness on participants’ choices may become more signif-
icant. It is also interesting to analyze the technology-
adoption game in a repeated setting. Our concept of the
critical mass promises to be instructive in the repeated set-
ting too. An alternative with a low critical mass is likely to
have an advantage in the beginning. However, as the game
proceeds, one may expect that participants’ ability to coor-
dinate their choices improves, which should reduce the
importance of riskiness for participants’ choices.
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Appendix A

In this appendix we present the English translation of
the instructions to our experiment which were handed
out in German.
Number of
others who
choose Z

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of
others
choose X

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice X 20 25 30 50 60 65 70 90 120 125 130 140 160 165 172 180 190
Z 170 150 145 130 125 120 115 90 80 75 70 65 60 55 50 45 40
Instructions. Please do not communicate with any of
the other participants! If you have questions please raise
your hand so that we can answer your question in private!.

You are participating in a decision experiment, in which
you can earn money. With 16 other randomly chosen par-
ticipants, whose identity will not be known to you, you
build a group. How much you earn depends on your own
decisions and those of the other participants of your group.
Every participant makes his (her) decisions independently
of the others.

The experiment consists of 16 different decision situ-
ations. In every decision situation, each participant
chooses among two alternatives, X and Z. A participant’s
payoff in a particular decision situation depends on his
(her) own choice and on the number of other partici-
pants in the group who make the same choice. The pay-
off to a participant is the higher, the more other
participants of the group have chosen the same alterna-
tive as the participant himself (herself). The payoff in
each decision situation is independent of the decisions
made in any of the other situations and is given in ficti-
tious monetary units.

The fictitious monetary units will be converted into €

for one randomly chosen experiment participant, such that
one monetary unit will be worth 50 €-Cent. Before this
experiment, we have chosen one of the 16 decision situa-
tions; the number of this decision situation is kept in a
sealed envelope. At the end of the experiment, we shall
randomly draw a group of 17 participants, whose decisions
in selected decision situation will be analyzed. Out of this
group we shall then randomly select one participant for
cash payment. Please notice that in the upper left corner
of this page as well as on the attached sheet you find your
individual participation number. We ask you to keep the
attached sheet, with which we can identify you for the po-
tential cash payment.
Every decision situation will be presented in a table. In
this table you see how your individual payoff in fictitious
units depends on your choice and the choices of the other
participants of your group. On the next page we give you
an example.

Example: Assume that your payoff in a given decision
situation depends on your individual choice (alternative
X or Z) and the choices of the other participants of your
group as presented in the following table:
According to this table your payment is:

� 20, if you choose X and none of the other participants
chooses X, i.e., all 16 other participants choose Z,
� 170, if you choose Z and none of the other participants

chooses X, i.e., all 16 other participants choose Z,
� 30, if you choose X, two of the other participants choose

X and 14 of the other participants choose Z,
� 145, if you choose Z, two of the other participants

choose X and 14 of the other participants choose Z,
� 165, if you choose X, 13 of the other participants choose

X and three of the others choose Z,
� 55, if you choose Z, 13 of the other participants choose X

and 3 of the others choose Z,
� 190, if you choose X, all 16 other participants choose X

and none of the others chooses Z,
� 40, if you choose Z, all 16 other participants choose X

and none of the others chooses Z.

We ask you now to analyze the following 16 decision
situations and mark you respective choice, alternative X
or Z. For marking your choice you find a box under each
decision situation.

When all the participants are ready with their choices,
we will collect the decision sheets and draw the person
who will be paid in cash.
Appendix B

In this appendix we present the decision situations, in
which the participants had to make their choices. On the
top of each table representing a decision situation we also
provide the underlying utility functions (which we did not
present to the participants), UA(NA) and UB(NB), from which
we calculated the (rounded) payoffs stated in the tables.
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The decision situations were placed in the experi-
ment’s decision sheets in an order different from the
one given below. In brackets, next to the number of each
decision situation, we provide the number under which
that decision situation appeared in the decision sheets
in the experiment. We presented two decision situations
on a single sheet of paper. In the decision sheets we
also re-labeled the alternatives such that an alternative
Decision situation 1[6]: UA(NA) = 134.44 + 7.22(NA � 1) and U
Number of others

who choose
B[X]

16 15 14 13 12 11 10 9

Number of others
who choose
A[Z]

0 1 2 3 4 5 6 7

Your choice A[Z] 134 142 149 156 163 171 178 1
B[X] 325 305 285 265 245 225 205 1

Decision situation 2[8]: UA(NA) = 178 + 4.5(NA � 1) and UB(NB

Number of others
who choose
B[Z]

16 15 14 13 12 11 10 9

Number of others
who choose
A[X]

0 1 2 3 4 5 6 7

Your choice A[X] 178 183 187 192 196 201 205 2
B[Z] 325 305 285 265 245 225 205 1

Decision situation 3[2]: UA(NA) = 213.64 + 2.27(NA � 1) and U
Number of others

who choose
B[X]

16 15 14 13 12 11 10 9

Number of others
who choose
A[Z]

0 1 2 3 4 5 6 7

Your choice A[Z] 214 216 218 220 223 225 227 2
B[X] 325 305 285 265 245 225 205 1

Decision situation 4[13]: UA(NA) = 243.33 + 0.42(NA � 1) and
Number of others

who choose
B[X]

16 15 14 13 12 11 10 9

Number of others
who choose
A[Z]

0 1 2 3 4 5 6 7

Your choice A[Z] 243 244 244 245 245 245 246 2
B[X] 325 305 285 265 245 225 205 1

Decision situation 5[4]: UA(NA) = 156.11 + 5.56(NA � 1) and U
Number of others

who choose
B[X]

16 15 14 13 12 11 10 9

Number of others
who choose
A[Z]

0 1 2 3 4 5 6 7

Your choice A[Z] 156 162 167 173 178 184 189 1
B[X] 300 285 270 255 240 225 210 1
could be either labeled as ‘‘Z’’ or ‘‘X’’. In brackets next to
each alternative, we provide its label in the specific deci-
sion situation in the experiment. Moreover, in the exper-
iment’s decision sheets (differently, again, to the
presentation below) in every table presenting a given
decision situation, the first and the fourth row referred
to alternative Z, while the second and the third row to
alternative X.
B(NB) = 5 + 20(NB � 1)
8 7 6 5 4 3 2 1 0

8 9 10 11 12 13 14 15 16

85 192 199 207 214 221 228 236 243 250
85 165 145 125 105 85 65 45 25 5

) = 5 + 20(NB � 1)
8 7 6 5 4 3 2 1 0

8 9 10 11 12 13 14 15 16

10 214 219 223 228 232 237 241 246 250
85 165 145 125 105 85 65 45 25 5

B(NB) = 5 + 20(NB � 1)
8 7 6 5 4 3 2 1 0

8 9 10 11 12 13 14 15 16

30 232 234 236 239 241 243 245 248 250
85 165 145 125 105 85 65 45 25 5

UB(NB) = 5 + 20(NB � 1)
8 7 6 5 4 3 2 1 0

8 9 10 11 12 13 14 15 16

46 247 247 247 248 248 249 249 250 250
85 165 145 125 105 85 65 45 25 5

B(NB) = 60 + 15(NB � 1)
8 7 6 5 4 3 2 1 0

8 9 10 11 12 13 14 15 16

95 201 206 212 217 223 228 234 239 245
95 180 165 150 135 120 105 90 75 60

(continued on next page)



Decision situation 6[7]: UA(NA) = 189 + 3.5(NA � 1) and UB(NB) = 60 + 15(NB � 1)
Number of others

who choose
B[X]

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others
who choose
A[Z]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A[Z] 189 193 196 200 203 207 210 214 217 221 224 228 231 235 238 242 245
B[X] 300 285 270 255 240 225 210 195 180 165 150 135 120 105 90 75 60

Decision situation 7[11]: UA(NA) = 215.9 + 1.8(NA � 1) and UB(NB) = 60 + 15(NB � 1)
Number of others

who choose
B[Z]

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others
who choose
A[X]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A[X] 216 218 220 221 223 225 227 229 230 232 234 236 238 240 241 243 245
B[Z] 300 285 270 255 240 225 210 195 180 165 150 135 120 105 90 75 60

Decision situation 8[12]: UA(NA) = 238.3 + 0.42(NA � 1) and UB(NB) = 60 + 15(NB � 1)
Number of others

who choose
B[X]

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others
who choose
A[Z]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A[Z] 238 239 239 240 240 240 241 241 242 242 242 243 243 244 244 245 245
B[X] 300 285 270 255 240 225 210 195 180 165 150 135 120 105 90 75 60

Decision situation 9[3]: UA(NA) = 205 + 1.5(NA � 1) and UB(NB) = 132.57 + 9.2(NB � 1)
Number of others

who choose
B[Z]

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others
who choose
A[X]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A[X] 205 207 208 210 211 213 214 216 217 219 220 222 223 225 226 228 229
B[Z] 280 271 262 252 243 234 225 216 206 197 188 179 169 160 151 142 133

Decision situation 10[9]: UA(NA) = 205 + 1.5(NA � 1) and UB(NB) = 104 + 11(NB � 1)
Number of others

who choose
B[Z]

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others
who choose
A[X]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A[X] 205 207 208 210 211 213 214 216 217 219 220 222 223 225 226 228 229
B[Z] 280 269 258 247 236 225 214 203 192 181 170 159 148 137 126 115 104

Decision situation 11[14]: UA(NA) = 205 + 1.5(NA � 1) and UB(NB) = 64 + 13.5(NB � 1)
Number of others

who choose
B[Z]

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others
who choose
A[X]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A[X] 205 207 208 210 211 213 214 216 217 219 220 222 223 225 226 228 229
B[Z] 280 267 253 240 226 213 199 186 172 159 145 132 118 105 91 78 64
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Decision situation 12[16]: UA(NA) = 205 + 1.5(NA � 1) and UB(NB) = 4 + 17.25(NB � 1)
Number of others

who choose
B[Z]

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others
who choose
A[X]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A[X] 205 207 208 210 211 213 214 216 217 219 220 222 223 225 226 228 229
B[Z] 280 263 246 228 211 194 177 159 142 125 108 90 73 56 39 21 4

Decision situation 13[1]: UA(NA) = 232 + 2(NA � 1) and UB(NB) = 164 + 9.1(NB � 1)
Number of others

who choose
B[Z]

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others
who choose
A[X]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A[X] 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264
B[Z] 310 301 292 283 273 264 255 246 237 228 219 209 200 191 182 173 164

Decision situation 14[5]: UA(NA) = 232 + 2(NA � 1) and UB(NB) = 134 + 10.97(NB � 1)
Number of others

who choose
B[Z]

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others
who choose
A[X]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A[X] 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264
B[Z] 310 299 288 277 266 255 244 233 222 211 200 189 178 167 156 145 134

Decision situation 15[10]: UA(NA) = 232 + 2(NA � 1) and UB(NB) = 93 + 13.58(NB � 1)
Number of others

who choose
B[X]

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others
who choose
A[Z]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A[Z] 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264
B[X] 310 296 283 269 256 242 228 215 201 188 174 160 147 133 120 106 92

Decision situation 16[15]: UA(NA) = 232 + 2(NA � 1) and UB(NB) = 30 + 17.5(NB � 1)
Number of others

who choose
B[Z]

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of others
who choose
A[X]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Your choice A[X] 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264
B[Z] 310 293 275 258 240 223 205 188 170 153 135 118 100 83 65 48 30
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Appendix C

In this appendix we provide the modifications of the Lo-
git regression-1 and �2, which include a dummy variable
measuring the influence of alternative B’s label on the
probability of a B-choice. That variable takes the value
‘‘1’’ if, in the specific decision situation, alternative B is la-
beled as X, and takes the value ‘‘0’’ if alternative B is labeled
as Z.

In both tables the significance levels are: ⁄⁄⁄1%, ⁄⁄ 5%,
⁄10%. The coefficients which are not marked with an aster-
isk are insignificant at the 10% significance level.
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Explanatory variable
 Coefficient (standard
error)
Logit regression-1(l) explaining the probability of
a B-choice
Constant
 �0.88 (0.56)

dmax

=Umax
B

3.9 (2.37)

(mB �mA)/mB
 �0.79⁄⁄ (0.39)

Dummy
 0.29⁄⁄ (0.14)

Wald v2, p-value
 0.0023

Number of observations (number

of groups)

2368 (148)
Logit regression-2(l) explaining the probability of
a B-choice
Constant
 �2.01⁄⁄ (0.65)

dmax

=Umax
B

8.97⁄⁄⁄ (3.4)
dmin
=Umin

B

�0.01⁄⁄ (0.01)
Dummy
 0.24⁄ (0.14)

Wald v2, p-value
 0.0022

Number of observations (number

of groups)

2368 (148)
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